Corrigendum: Residuation in Commutative Ordered Monoids with Minimal Zero
نویسندگان
چکیده
The assertional logic S(BCIA) of the quasivariety of BCI-algebras (in Iseki's sense) is axiomatized, relative to pure implicational logic BCI, by the rule x, y, x → y (G) (see [1]). Alternatively, the role of (G) can be played by x x → (y → y) (1) (see [2]). The formula (x → x) → (y → y) (2) is a theorem of S(BCIA). In [2, Proposition 22] we claimed erroneously that, relative to BCI, the axiom (2) is equivalent to (G) (i.e. to (1)), and we concluded that S(BCIA) is an axiomatic extension of BCI. This conclusion is also false. To correct this we verify here
منابع مشابه
Solutions to Some Open Problems on Totally Ordered Monoids
In this paper solutions to three open problems on ordered commutative monoids posed in [4] are presented. By an ordered monoid we always mean a totally ordered monoid. All the problems are related to the class of ordered commutative monoids which are homomorphic images of ordered free commutative monoids.
متن کاملOn the Finite Embeddability Property for Residuated Ordered Groupoids
The finite embeddability property (FEP) for integral, commutative residuated ordered monoids was established by W. J. Blok and C. J. van Alten in 2002. Using Higman’s finite basis theorem for divisibility orders we prove that the assumptions of commutativity and associativity are not required: the classes of integral residuated ordered monoids and integral residuated ordered groupoids have the ...
متن کاملPetri Algebras
The firing rule of Petri nets relies on a residuation operation for the commutative monoid of natural numbers. We identify a class of residuated commutative monoids, called Petri algebras, for which one can mimic the token game of Petri nets to define the behaviour of generalized Petri net whose flow relation and place contents are valued in such algebraic structures. We show that Petri algebra...
متن کاملNets Enriched over Closed Monoidal Structures
We show how the firing rule of Petri nets relies on a residuation operation for the commutative monoid of natural numbers. On that basis we introduce closed monoidal structures which are residuated monoids. We identify a class of closed monoidal structures (associated with a family of idempotent group dioids) for which one can mimic the token game of Petri nets to define the behaviour of these ...
متن کاملCommutative Idempotent Residuated Lattices
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. A residuated lattice is an algebra A = (A,∨,∧, ·, e, /, \) such that (A,∨,∧) is a lattice, (A, ·, e) is a monoid and for every a, b, c ∈ A ab ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The last condition is equivalent to the fact that (A,∨,∧, ·, e) is a lattice-ordered monoid and for every a, b ∈ A there is a great...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports on Mathematical Logic
دوره 39 شماره
صفحات -
تاریخ انتشار 2005